Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification.
نویسندگان
چکیده
Aminoacyl-tRNA synthetases (aaRSs) are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.
منابع مشابه
EVOLUTION AND tRNA RECOGNITION OF THREONYL-tRNA SYNTHETASE FROM AN EXTREME THERMOPHILIC ARCHAEON, Aeropyrum pernix K1
An extreme thermophilic archaeon, Aeropyrum pernix K1 possesses two possible threonyl-tRNA synthetase genes. Sequence homology analysis of these genes with other species threonyl-tRNA synthetase showed that the shorter gene did not possess motif-2 and motif-3 of catalytic core that were conserved in class II aminoacyl-tRNA synthetases. On the other hand, the longer gene had almost all amino aci...
متن کاملExploring the Molecular Basis for Binding of Inhibitors by Threonyl-tRNA Synthetase from Brucella abortus: A Virtual Screening Study
Targeting threonyl-tRNA synthetase (ThrRS) of Brucella abortus is a promising approach to developing small-molecule drugs against bovine brucellosis. Using the BLASTp algorithm, we identified ThrRS from Escherichia coli (EThrRS, PDB ID 1QF6), which is 51% identical to ThrRS from Brucella abortus (BaThrRS) at the amino acid sequence level. EThrRS was used as the template to construct a BaThrRS h...
متن کاملEvolutionary basis for the coupled-domain motions in Thermus thermophilus leucyl-tRNA synthetase.
Aminoacyl-tRNA synthetases are multidomain proteins that catalyze the covalent attachment of amino acids to their cognate transfer RNA. Various domains of an aminoacyl-tRNA synthetase perform their specific functions in a highly coordinated manner to maintain high accuracy in protein synthesis in cells. The coordination of their function, therefore, requires communication between domains. In th...
متن کاملMutation in Aminoacyl Trna Synthetase 1 In Autosomal Recessive Intellectual Disability
Background: Intellectual disability (ID) is one of the most common neurodevelopment disorders that caused by both environment and genetic factors. Also genetic defects have involving for approximately 50% of ID etiology, it is demonstrated that genetics play significant role in ID development. The important risk factor in most country in ID is consanguinity marriage. Iran has high frequency of ...
متن کاملScreening of quinoline, 1,3-benzoxazine, and 1,3-oxazine-based small molecules against isolated methionyl-tRNA synthetase and A549 and HCT116 cancer cells including an in silico binding mode analysis.
Elevated activity of methionyl-tRNA synthetase (MRS) in many cancers renders it a possible drug target in this disease area, as well as in a series of parasitic diseases. In the present work, we report the synthesis and in vitro screening of a library of 1,3-oxazines, benzoxazines and quinoline scaffolds against human MRS. Among the compounds tested, 2-(2-butyl-4-chloro-1-(4-phenoxybenzyl)-1H-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Life
دوره 5 4 شماره
صفحات -
تاریخ انتشار 2015